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A unified view is given of the instabilities that may develop in two-layer Couette
flows, as a ‘phase diagram’ in the parameter space. This view is obtained from a
preliminary study of the single-fluid Couette flow over a wavy bottom, which reveals
three flow regimes for the disturbances created at the bottom, each regime being
characterized by a typical penetration depth of the vorticity disturbances and an
effective Reynolds number. It appears that the two-layer flow exhibits the same flow
regimes for the disturbances induced by the perturbed interface, and that each type
of instability can be associated with a flow regime. Typical curves giving the growth
rate versus wavenumber are deduced from this analysis, and favourably compared
with the existing literature. In the second part of this study, we propose a mechanism
for the long wavelength instability, and provide simple estimates of the wave velocity
and growth rate, for channel flows and for semi-bounded flows. In particular, an
explanation is given for the ‘thin-layer effect’, which is typical of multi-layer flows
such as pressure driven flows or gravity driven flows, and according to which the flow
is stable if the thinner layer is the less viscous, and unstable otherwise.

1. Introduction
Interfacial instabilities in multi-layer flows have received much attention in the

recent literature, for their importance in engineering processes, such as coating,
polymer extrusion, oil transportation, as well as for their basic scientific significance.
Three fundamental systems have been studied: gravity-driven flows such as multi-
layer films on an inclined plane (Kliakhandler & Sivashinsky 1997), pressure-driven
flows such as core-annular (Joseph et al. 1997) and plane Poiseuille flows (Laure et
al. 1997), and shear-driven flows such as plane Couette flow. This paper is concerned
with the linear stability of the latter flow of two superposed layers of immiscible fluids
(figure 1). Indeed, despite the numerous papers already devoted to the subject, and
although the problem is governed by the well-established Orr–Sommerfeld equation
and boundary conditions, several questions remain unanswered.

Linear stability analyses have identified three types of instability. Two of them, a
long-wavelength instability (Yih 1967; Hooper 1985) and a short-wavelength instabil-
ity (Hooper & Boyd 1983), are low-Reynolds-number instabilities and arise from an
‘interfacial mode’. This mode comes from the jump at the interface in the slope of the
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Figure 1. Two-layer Couette flow.

velocity profile caused by the viscosity difference, and is neutral for equal viscosity.
The mechanism for the short-wave instability has been given by Hinch (1984): at the
perturbed interface, the base flow velocities are discontinuous (figure 1), and velocity
disturbances must develop to satisfy continuity. The resulting vorticity disturbances
are in-phase with the deformed interface, but small out-of-phase components arise
from advection by the base flow. The flow induced by these out-of-phase vorticity
disturbances is such that the initial perturbation of the interface amplifies, at least
for equal densities, corresponding to instability. The long-wave instability is linked
to the presence of a wall close to the interface. Typically, when the thin layer is the
less viscous, the flow is stable, and it is unstable otherwise. This ‘thin-layer effect’ is
not specific to the two-layer Couette flow and also appears in multi-layer liquid films
flowing down an inclined plane (Wang, Seaborg & Lin 1978) and in core-annular
flows (Joseph et al. 1997). Experimental evidence of this instability has been presented
(Barthelet, Charru & Fabre 1995; Sangalli et al. 1995; Charru & Barthelet 1999), but
it has received no physical explanation.

Finally, the third type of instability arises from a ‘wall mode’ (Hooper & Boyd
1987), and corresponds to the classical instability of shear flows. It typically occurs at
high shear rates, with a wavelength of the order of the thickness of the fluid layers
(Renardy 1985).

However, it is not clear whether the above picture is complete, and the domains
of existence of the above instabilities in the parameter space remain blurred. Indeed,
the problem depends on six dimensionless parameters, including surface tension and
gravity effects; many asymptotic expansions have been performed, as well as numerical
studies, but the numerous lengthscales used to compute and discuss the results do
not facilitate their comparison. As a result, it feels like having the pieces of a puzzle,
whose global picture remains unknown. From the point of view of experimentalists,
it is difficult to guess from the existing literature, for given flow conditions, what is
the critical flow rate or pressure gradient, and the fastest growing mode.

The purpose of this paper is to clear up the above points, and to propose a unified
and more physical view of the instabilities that may arise in two-layer Couette flows.
A clear picture of the lengthscales involved in multi-layer flows is gained from the
much simpler problem of single-fluid Couette flow over a wavy bottom (§ 2), which
depends on two dimensionless lengths only, the layer thickness α and a viscous
lengthscale β. This problem reveals three different flow regimes, each characterized by
the magnitude of inertia and penetration depth of the vorticity disturbances created
at the wavy bottom. Each regime lies in a particular region of the parameter space
(α–β), or ‘phase diagram’. Then, coming back to the two-layer Couette flow, we
analyse the existing literature with a unified set of scales, and show that the two-layer
flow exhibits the same flow regimes as the single-fluid flow, and that each instability
can be associated with one of these flow regimes (§ 3). The second part of this work
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Figure 2. One-fluid Couette flow over a wavy bottom.

is devoted to the mechanism of the long-wave instability (§ 4). Simple estimates of
the wave velocity and growth rate are provided, and an explanation for the ‘thin-
layer effect’ is given. Surface tension and gravity effects are considered elsewhere
(Albert & Charru 2000) and are ignored throughout this paper. Finally, note that the
consideration of two-dimensional disturbances is justified by the fact that Squire’s
theorem holds for two-layered flows (Hesla, Pranckh & Preziosi 1986), as long as
marginal stability conditions are studied.

2. Couette flow over a wavy bottom
Consider the Couette flow of a fluid layer with kinematic viscosity ν and thickness

h, over a wavy bottom η̂dim cos kx, where superscript dim indicates dimensional (figure
2). The aim of this section is (i) to find how far the disturbances induced by the wavy
bottom penetrate into the fluid, i.e. their ‘penetration depth’ δ, and (ii) to estimate
inertial effects, i.e. the effective Reynolds number Reeff .

2.1. The linearized problem

The velocity u = (U,V ) and the pressure P are considered as the superposition of
a base flow U = ay, V = 0, P = 0, corresponding to a flat bottom, and stationary
disturbances u, v, p created by the wavy bottom. Choosing the inverse wavenumber
k−1 as the unit length, and the inverse shear rate a−1 as the unit time, the problem
depends on two dimensionless parameters: the thickness α of the fluid layer and the
viscous length β:

α = kh, β =

(
k2ν

a

)1/3

. (1a)

The explanation for the power 1
3

in the definition of β will appear below. For
convenience, we also define a ‘shear Reynolds number’ Re, which is a dimensionless
measure of the shear rate:

Re :=
ah2

ν
=
α2

β3
. (1b)

Taking into account the symmetry x→ x+ 2π of the problem, a stationary solution
for the disturbances is searched for as:

(u, v, p) = 1
2
((û(y), v̂(y), p̂(y))eix + c.c.)

where c.c. means complex conjugate. For small slope waves (η̂ := kη̂dim � 1), the
solution can be searched for from the linearized mass and momentum conservation
equations:

iû+ ∂yv̂ = 0, (2)
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Figure 3. Amplitudes of the disturbances. From left to right: û, v̂ and ω̂; from top to bottom:
α = 0.1, β = 1; α = ∞, β = 0.1; α = ∞, β = 10. Bold line: real part (component in phase with the
bottom), plain line: imaginary part (component with phase leading by 90◦ that of the bottom).

iyû+ v̂ = −ip̂+ β3(−û+ ∂2
yû), (3a)

iyv̂ = −i∂yp̂+ β3(−v̂ + ∂2
yv̂), (3b)

and the no-slip boundary conditions at the walls:

û(0) = −η̂, v̂(0) = 0, (4a)

û(α) = 0, v̂(α) = 0. (4b)

Since the problem to be solved is linear, we impose the normalization condition η̂ = 1.

2.2. Exact solution for the linearized problem and ‘phase diagram’

The exact solution of (2), (3), and (4) can be obtained from the vorticity equation:

iyω̂ = β3(−ω̂ + ∂2
yω̂), (5)

which can be put in the standard Airy equation ∂2
z ω̂ − zω̂ = 0 through the transfor-

mation z = eiπ/6(y − iβ3)/β. The solution of (5) is the linear combination of the Airy
functions Ai(z) and Bi(z):

ω̂ = C1Ai(z) + C2Bi(z). (6)

Then, the streamfunction ψ can be obtained from the equation ∂2
yψ̂− ψ̂ = −ω̂, whose

solution is:

ψ̂(y) =
1

2

{
e−y
∫ y

0

eY ω̂(Y ) dY + ey
∫ α

y

e−Y ω̂(Y ) dY

}
+ C3e

−y + C4e
y. (7)

The constants C1, C2, C3 and C4 can be determined from the boundary conditions (4)
on û = ∂yψ̂ and v̂ = −iψ̂: they are given in Appendix A.

A first idea of the penetration depth δ of the disturbances can be gained from
figure 3, which displays the real and imaginary parts of the amplitude of velocity and
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vorticity disturbances for three typical cases. Figure 3(a) shows that for α = 0.1 and
β = 1, disturbances diffuse up to the upper wall. Thus, the penetration depth δ is
the layer thickness α, and transverse gradients ∂y are O(1/α). As proved below, these
features are encountered more generally for α < 1 and β > α, and this type of flow
will be referred to as the ‘shallow viscous regime’. Figure 3(b) shows that for α = ∞
and β = 0.1, the penetration depth divides into two parts: a thin layer of rotational
flow with strong gradients close to the interface, surrounded by a region of potential
flow decaying exponentially. These features are encountered more generally for α > 1
and β < 1, and this type of flow will be referred to as the ‘inviscid regime’. Finally,
figure 3(c) shows that for α = ∞ and β = 10, the thickness of the penetration depth
is O(1), i.e. roughly equal to one wavelength. This remains true more generally for
α > 1 and β > 1, and this type of flow will be referred to as the ‘deep viscous regime’.

A first idea of the importance of inertial effects can also be gained from figure 3.
Indeed, inertial effects are expected to shift the disturbances created by the wavy bot-
tom, so that the magnitude of inertial effects can be measured by the imaginary
part of the disturbances. For the shallow viscous regime and the deep viscous
regime, the velocity u and the vorticity ω are essentially in phase with the interface:
this corresponds to small inertial effects. The phase of the velocity v leads by 90◦
the phase of the bottom, and disturbances form cells rotating clockwise above the
peaks and anticlockwise above the troughs. For the inviscid regime, the real and
imaginary components have same order of magnitude: the rotating cells formed by
the disturbances are shifted downstream by significant inertial effects.

The above remarks can be made more precise by introducing the following defi-
nitions of the penetration depth of vorticity disturbances (figure 4) and of the effective
Reynolds number Reeff measuring inertial effects:

δ := |∂yû(0)|−1 = |ω̂(0)|−1, (8a)

Reeff :=
ω̂i(0)

ω̂r(0)
. (8b)

Figure 5 displays the penetration depth δ and the effective Reynolds Reeff number
versus β, for several α. Figures 5(a) and 5(b) show that for α > 1, an asymptotic regime
is reached from α = 5. In this regime, δ ∼ β and Reeff ∼ 1 for β < 1, and δ ∼ 1
and Reeff ∼ β−3 for β > 1. Figures 5(c) and 5(d) show that for α < 2, an asymptotic
regime is nearly reached from α = 1. In this regime, δ ∼ β and Reeff ∼ 1 for β < α,
and δ ∼ α and Reeff ∼ (α/β)3 = αRe for β > α. Note that the transitions between
the asymptotic domains are sharp and occur over less than one decade. These results
are summarized in the (logβ, logα) plane (figure 6), which can be considered as the
‘phase diagram’ of the Couette flow over a wavy bottom. This plane is divided into
three regions, corresponding to the shallow viscous regime, the inviscid regime, and
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Figure 5. (a) Penetration depth δ and (b) effective Reynolds number Reeff versus β for α > 1.
(c) Penetration depth δ/α and (d) effective Reynolds number Reeff versus β/α for α 6 1.
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Figure 6. ‘Phase diagram’ of the Couette flow over a wavy boundary.

the deep viscous regime. Each flow regime is defined by its penetration depth δ and
effective Reynolds number Reeff . Finally, note that in all regions δ and Reeff satisfy:

δ = min (1, α, β), (9a)

Reeff = min (1, 1/β3, (α/β)3). (9b)
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The fact that the penetration depth of the inviscid regime scales as β can be
understood from the vorticity equation (5). Indeed, when the penetration depth is
much thinner than the wavelength, transverse gradients ∂y dominate and (5) reduces
to iyω̂ = β3∂2

yω̂. Setting y ∼ δ and ∂y ∼ 1/δ in the above equation leads to δ ∼ β,
which justifies the definition (1a) of β.

2.3. Asymptotic solutions in the three regimes

All the above results can be confirmed from asymptotic expansions. In the shallow
viscous regime (α� 1 and β > α), the asymptotic solution of (3) and (4) can be found
by rescaling the thickness of the layer to unity by the change of variable Y = y/α, so
that the gradients appearing in (3) are O(1). Expanding the disturbances in powers
of α and assuming Re = O(1), the solution for the first two orders is found to be:

û = (Y − 1)(1− 3Y ) + iα
Re

30
Y (1− Y )2(1− Y − 3Y 2) + O(α2),

v̂ = iαY (Y − 1)2 + α2Re

60
Y 2(1− Y )3(1 + Y ) + O(α3),

p̂ = i
6

Re
− α

5
+ O(α2).

Dominant terms correspond to Stokes flow, whereas correction terms take into
account small inertial effects. (Note that the amplitude of the dimensional pressure
is p̂ ρ(a/k)2(kη̂dim) = 6(η̂dim/h)2µa/kη̂dim: for fixed η̂dim/h, it diverges for small wave
slope as 1/(kη̂dim), which corresponds to the classical result for the lubrication pressure
(Batchelor 1967).) Thus, the vorticity at the wavy bottom is:

ω̂(0) = −4

α
− i

Re

30
+ O(α) (10)

from which the penetration depth and the effective Reynolds number are obtained:

δ = 1
4
α+ O(α2) (11a)

Reeff =
αRe

120
+ O(α2). (11b)

These results agree with the exact results displayed in figure 5: the penetration depth
is O(α) and inertial effects are O(αRe).

In the inviscid regime (α > β and β � 1), the upper wall is expected to have
no effect, and the thickness α, which appears in the no-slip conditions at the upper
wall only, disappears from the problem. Transverse gradients are expected to be
O(1/β), and are rescaled to O(1) by the change of variable Y = y/β. Expanding the
disturbances in powers of β, the solution at dominant order for û is found to be:

û = −

∫ ∞
Y

Ai (eiπ/6Y ) dY∫ ∞
0

Ai (eiπ/6Y ) dY

+ O(β) with

∫ ∞
0

Ai (eiπ/6Y ) dY ≈ 0.336 e−iπ/6,

with similar expressions involving integrals of Airy functions for v̂ and p̂. Thus, the
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vorticity at the wavy bottom is:

ω̂(0) = − 1

β

Ai(0)∫ ∞
0

Ai (eiπ/6Y ) dY

+ O(β0) ≈ −1.06

β
eiπ/6 + O(β0), (12)

and the penetration depth and the effective Reynolds number are:

δ ≈ β

1.06
+ O(β2), (13a)

Reeff ≈ 0.577 + O(β). (13b)

These results agree with the exact results shown in figures 3 and 4: the penetration
depth is O(β) and inertial effects are found from dominant order and are O(1).

Finally, in the deep viscous regime (α � 1 and β � 1), the upper wall is expected
to have no effect, and the thickness α disappears from the problem as in the inviscid
regime. Transverse gradients are expected to be O(1). Expanding the disturbances in
powers of 1/β3, the solution of (3) and (4) for the first two orders is found to be:

û = (y − 1)e−y +
i

12β3
y(6− y)e−y + O(1/β6),

v̂ = iye−y +
1

12β3
y2(3 + y)e−y + O(1/β6),

p̂ = 2iβ3e−y − 1
2
(2 + y + y2)e−y + O(1/β3).

As for the shallow viscous regime, dominant terms correspond to Stokes flow, and
correction terms account for small inertial effects. (Again, p̂ scales as β3 � 1 which
corresponds to the lubrication pressure.) Thus, the vorticity at the wavy bottom is:

ω̂(0) = −2− 1
2
i

1

β3
+ O

(
1

β6

)
(14)

and the penetration depth and the effective Reynolds number are:

δ = 1
2

+ O

(
1

β3

)
, (15a)

Reeff =
1

4β3
+ O

(
1

β6

)
. (15b)

Again, these results agree with the exact results shown in figures 3 and 4: the
penetration depth is O(1) and inertial effects are O(β−3).

3. Two-layer Couette flow

The aim of this section is to provide a unified view of the stability results previously
obtained for the two-layer Couette flow, from the construction of phase diagrams
similar to that brought out in the previous section.
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3.1. The linearized problem

Guided by the single-fluid problem discussed in the previous section, we define for
each fluid a dimensionless thickness and a dimensionless viscous length:

αj := khj, βj =

(
k2νj

aj

)1/3

. (16a)

Together with the viscosity ratio m or the density ratio r:

m :=
µ2

µ1

, r :=
ρ2

ρ1

, (16b)

the above lengthscales completely define the problem, when gravity and surface
tension are ignored. The six parameters (16) are not independent: continuity of shear
stress at the interface for the base flow, µ1a1 = µ2a2, gives:

β3
2

β3
1

=
m2

r
. (17)

For convenience, we also define the ‘shear Reynolds number’ of the lower fluid as:

Re :=
a1h

2
1

v1

=
α2

1

β3
1

. (18)

Taking k−1 as the unit length and a−1
1 as the unit time, the base flow is given by

U1 = y,U2 = y/m, and the linearized conservation equations for the amplitudes of
the normal modes exp {i(x− ct)} are:

iûj + ∂yv̂j = 0 (j = 1, 2), (19a)

i(y/mj − c)ûj + v̂j/mj = − ip̂j
rj

+
β3
j

mj
(−ûj + ∂yyûj) (j = 1, 2), (19b)

i(y/mj − c)v̂j = −∂yp̂j
rj

+
β3
j

mj
(−v̂j + ∂yyv̂j) (j = 1, 2), (19c)

where r1 = 1, r2 = r, m1 = 1, m2 = m. The no-slip conditions at the walls are:

û1(−α1) = 0, v̂1(−α1) = 0, (20a)

û2(α2) = 0, v̂2(α2) = 0, (20b)

the linearized equations for continuity of velocity and stress at the interface y = 0
are:

η̂ + û1 =
η̂

m
+ û2, (20c)

v̂1 = v̂2, (20d)

∂yû1 + iv̂1 = m(∂yû2 + iv̂2), (20e)

−(p̂2 − p̂1) + 2
rβ3

2

m
∂yv̂2 − 2β3

1 ∂yv̂1 = 0, (20f)

and the linearized no-mass transfer at the interface (or kinematic condition) is:

iη̂c+ v̂j = 0. (20g)

Note that the equations for the single-fluid problem addressed in the previous section
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Shallow viscous ×2
regime (Yih 1967)

d� 1
cdim

a1h1

=
2(1− m)

d
+ O(α2

1)

σdim

a1

= α2
1 Re (1− m)

rd2

60m2
+ O(α4

1)

|1− m| � 1
cdim

a1h1

=
1− m

4
+ O(α2

1)

|1− d| � 1
σdim

a1

= α2
1 Re (1− m)

7(1− r)
960

+ O(α4
1)

Deep viscous ×2 regime
(Hooper & Boyd 1983)

cdim

a1h1

= 0 + O(1/β6
1 )

σdim

a1

=
1

β3
1

(1− m)

2m2

(r − m2)

(1 + m)2
+ O(1/β9

1 )

Inviscid ×2 regime, r = 1
(Hooper & Boyd 1983)

cdim ∼ a1

k

1− m
2m

σdim

a1

∼ −2(1 + m)β3
1

Table 1. Dimensional wave velocity cdim and growth rate σdim of the interfacial mode for channel
flows. Since m = O(1), d = O(1) and r = O(1), then β1 ∼ β2 and α1 ∼ α2, and both flows are in the
same regime. For the wall mode, see Appendix B.

are recovered from the above equations with lower fluid of infinite density and
viscosity, after the unit time has been changed to a−1

2 .
Finally, extending the definitions (8) to the two-fluid flow, we define the penetration

depth δj of the vorticity disturbances and the effective Reynolds number Reeff j in
each fluid as:

δj := |∂yûj(0)|−1 = |ω̂j(0)|−1 (j = 1, 2), (21a)

Reeff j :=
ω̂ji(0)

ω̂jr(0)
(j = 1, 2), (21b)

where ω̂jr and ω̂ji are the real part and imaginary part of the vorticity disturbance in
fluid j, respectively.

3.2. ‘Phase diagram’ for channel flows (finite α1 and α2)

Two different cases have been considered in the literature. The first case corresponds
to channel flows, i.e. finite α1 and α2 (d = h2/h1 = α2/α1 = O(1)), and the second case,
to semi-bounded flows, i.e. finite α1 and α2 = ∞(d = ∞). The asymptotic results for the
wave velocity and growth rate are summarized in this subsection for channel flows
(table 1), and in the next subsection for semi-bounded flows (table 2). All studies
assume fluid properties to be of the same order of magnitude, i.e. m = O(1) and
r = O(1), so that β2 ∼ β1 (for air over water, βa/βw = 0.6, and for viscous oil over
water with µo/µw = 30, βo/βw ≈ 10).

The stability of channel flows against long-wavelength disturbances has been studied
by Yih (1967), who performed a long-wave expansion similar to that performed here
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in § 2.3, with:

α1 � 1, Re = O(1). (22)

The wave velocity and the growth rate have complicated the expressions given in
Appendix C. Table 1 gives simpler expressions for two limits: (i) similar layers (m ≈ 1
and d ≈ 1), and (ii) layers with very different thickness (d � 1, or more precisely
α1 � α2 � 1). The most important feature is that the growth rate is proportional to
α2

1Re(1 − m): instability is entirely due to the viscosity difference of the layers, and
arises however small the shear Reynolds number is. Finally, the penetration depth is
δj ∼ αj and the effective Reynolds number is Reeff j ∼ α3

j /β
3
j : the flow within each

layer is in the ‘shallow viscous regime’ defined in § 2 for the single-fluid Couette flow.
The stability against short-wavelength disturbances has been studied by Hooper

& Boyd (1983) from a short-wave expansion similar to that performed here in § 2.5,
with:

β3
1 � 1, α1 = α2 = ∞. (23)

It appears that for equal density, short waves are always unstable when surface tension
is ignored. The mechanism for this instability has been given by Hinch (1984) and
was outlined in the introduction of this paper. Eigenfunctions decay exponentially
away from the interface with penetration depth δj ∼ 1, and the effective Reynolds
number is Reeff j ∼ 1/β3

j : the flow within each layer is in the ‘deep viscous regime’
defined in § 2. The effect of the walls (finite thicknesses) has been taken into account
by Hooper (1989), assuming equal density. This study gives more accurate results in
the deep viscous regime for α1 ∼ α2 close to unity, and shows that a wall has no effect
as soon as the layer thickness is greater than the wavelength (khj > 6). However, this
expansion is unable to give the right growth rate and wave velocity for long waves,
because the limits β3

1 →∞ and α1 → 0 are not interchangeable.
The third case for channel flows corresponds to:

β1/α1 � 1 with β1 � 1. (24)

It has been studied by Hooper & Boyd (1983) for unbounded fluid layers (α1 = α2 =
∞) from an asymptotic analysis for β1 � 1 of the exact dispersion relationship. All
eigenmodes are found to be stable, and table 1 gives the wave velocity and growth
rate of the least stable mode. The form of the eigenfunctions indicates that the
penetration depth is O(βj) and inertial effects are O(1). For bounded layers, these
results are expected to remain valid as long as β1/α1 � 1, and this is confirmed by
numerical studies (Renardy 1985; Hooper & Boyd 1987; Albert & Charru 2000).
Thus the flow within each layer is in the ‘inviscid regime’ defined in § 2.

The above discussion is synthesized on the ‘phase diagram’ (figure 7a), similar to
that of the single-fluid Couette flow (figure 6). The boundaries separating the various
regimes are the same for the two fluids. The scaling laws for the penetration depths
δj and for the effective Reynolds number Reeff j are the same as for the single-fluid
Couette flow. The growth rate is O(α1Reeff 1) = O(α2Reeff 2) in the shallow viscous
regime, and is O(Reeff 1) = O(Reeff 2) in the deep viscous regime. In the inviscid regime,
the interfacial mode is always stable and its damping rate is O(β3

1 ) = O(β3
2 ).

3.3. ‘Phase diagram’ for semi-bounded flows (finite α1, α2 = ∞)

For the deep viscous and inviscid regimes discussed above, the walls play no role,
so that there is no difference between channel flow and semi-bounded flow (in the
deep viscous regime, the asymptotic expansion in powers of 1/β3

1 � 1 performed by
Hooper & Boyd (1987, § 4.4) only gives more accurate results for α1 close to unity
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1: shallow
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Figure 7. ‘Phase diagram’ of the two-layer Couette flow, (a) channel flow; (b) semi-bounded flow.

Shallow viscous/inviscid
regime (Hooper 1985)

cdim

a1h1

= 0.46(1− m)α
1/3
1

(
rRe

m2

)1/3

+ O(α
2/3
1 )

σdim

a1

= 0.27(1− m)α
4/3
1

(
rRe

m2

)1/3

+ O(α
5/3
1 )

Deep viscous ×2 regime
(Hooper & Boyd 1987)

cdim

a1h1

∼ α1(1− m)

(cosh α1 + m sinh α1)2 + α2
1(1− m2)

No expression available for σdim; for α1 →∞, see table 1.

Table 2. Dimensional wave velocity cdim and growth rate σdim for semi-bounded flows (α2 = ∞).
Since m = O(1) and r = O(1), then β1 ∼ β2. For the wall mode, see Appendix B.

(table 2)). Differences appear only when the lower fluid is in the shallow viscous
regime (α1 � 1 and α1 � β1). This case has been studied by Hooper (1985), matching
the long-wave expansion of Yih in the lower fluid to the exact solution in the upper
fluid, with:

α1 � 1, α2 = ∞, Re = O(1). (25)

Waves are dispersive and the growth rate is stronger than in the channel flow case:
it scales as k4/3 rather than k2 (table 2). The upper fluid is in the inviscid regime for
β1 ∼ β2 � 1, and in the deep viscous regime for β1 ∼ β2 � 1. The case of fluids with
similar viscosity and density was tackled by Renardy (1987) as a perturbation of the
single-fluid problem. Unfortunately, no significant simplification arises from this case,
and physical information seems hard to obtain from the complicated expression of
the perturbed eigenvalue, unless some additional long- or short-wave limit is taken.

The above discussion is synthesized on the ‘phase diagram’ shown in figure 7(b).
The regions for the inviscid regime and deep viscous regime are the same as for
channel flows, but the former region of the shallow viscous regime is now divided
into two parts, depending on whether β1 ∼ β2 � 1 or β1 ∼ β2 � 1. Finally, note that
the penetration depth and the effective Reynolds number satisfy:

δj = min (1, αj , βj), (26a)

Reeff j = min (1, 1/β3
j , (αj/βj)

3). (26b)
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Figure 8. Marginal stability curves for semi-bounded Couette flow, from figures 3, 6 and 7 of
Hooper & Boyd (1987). (a) m = 0.5, asymptotes: α/β = 1.47 and β = 0.438; (b) m = 2, asymptotes:
α/β = 3.11, α = 1.8 and β = 0.276. These curves follow the boundaries of the flow regimes defined
in figure 7.

3.4. Relevance of the phase diagram from numerical results

Along with asymptotic studies, numerical studies have been performed for α1 = O(1)
or Re� 1 (Renardy 1985; Hooper & Boyd 1987; Albert & Charru 2000). Marginal
stability curves are generally shown in the (Re, α1)-plane or in the ((α1/β1), α1)-plane;
however, plotting these curves in the (β1, α1)-plane is more informative: each type of
instability is clearly isolated, and the relevance of the phase diagram (figure 7) can be
confirmed. As an example, figure 8 displays figures 6 and 7 of Hooper & Boyd (1987)
redrawn in the (β1, α1)-plane. Densities are equal, so that short waves are unstable
in both cases. For m = 0.5 (figure 8a), long waves are unstable (thin-layer effect), so
that there is no marginal curve between the shallow viscous and the deep viscous
regimes; the marginal stability curve follows the boundary of the inviscid regime.
For m = 2 (figure 8b), one of the two marginal curves follows the boundary of the
shallow viscous regime: long waves are stable, in agreement with the thin-layer effect;
the vertical part of the second marginal curve separates the unstable deep viscous
regime from the stable inviscid regime. However, for β1 � 1 and α1 = O(1), i.e. for
strong shear Reynolds number (Re = α2

1/β
3
1 � 1), another unstable region appears,

the nature of which is discussed below.
The small-Re eigenmodes discussed until now are clearly ‘interfacial modes’ in the

sense that they exist because of the presence of the interface, and that disturbances
are essentially localized in the vicinity of the interface. Another signature of an
interfacial mode can be found from the kinetic energy equation, which shows that
instability arises from the small difference between the rate of energy dissipation
(always negative) and the net rate of work done at the interface by shear stress
disturbances (Hooper & Boyd 1983; Goussis & Kelly 1988; Albert & Charru 2000).
However, tracing the interfacial mode for increasing Re shows that the nature of the
instability changes for high Re: the maximum of the eigenfunctions lies near the walls,
and the kinetic energy equation shows that instability now arises from energy transfer
from the mean flow to disturbances via the Reynolds stresses; for Couette flow,
there is no crossing of the interfacial mode with a shear mode as it might occur for
Poiseuille flow (Albert & Charru 2000). This mode of instability, which corresponds
to the classical wall mode of single-fluid shear flows, has been studied by Hooper &
Boyd (1987) from a singular perturbation method matching an inviscid solution in
the bulk of each fluid to viscous boundary layers at the walls and at the interface.
The solution is found as series expansions in powers of (α1Re)

−1/2 = (β1/α1)
3/2, which
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Figure 9. (a) channel flow; (b) semi-bounded flow. Arrows are lines of increasing k at constant
shear rate (slope 3

2
). Left-hand line: strong shear rate (Re = a1h

2
1/ν1 = α2

1/β
3
1 � 1); right-hand line:

weak shear rate (Re� 1).

is the order of magnitude of the thickness of the boundary layers. The wave velocity
and growth rate are given in Appendix B for the case of equal density (r = 1). Note

that the growth rate is of order β
3/2
1 = k(ν1/a1)

1/2 and that instability arises when
the thin layer is the less viscous (m > 1), unlike the ‘thin-layer effect’ which holds for
small Re.

3.5. The experimental point of view

From the experimental point of view, there are two important questions. (i) For
given flow conditions, i.e. for given fluids and shear rate, what is the most amplified
wavenumber and its growth rate? More precisely, what does the curve σ(k) look like?
(ii) How does this curve change as the shear rate changes?

For given fluid properties, constant shear rate corresponds to constant Re :=
a1h

2
1/ν1 = α2

1/β
3
1 , i.e. to the oblique lines drawn in figure 9. Along one of these lines,

the dimensional wavenumber varies from zero (bottom left-hand quadrant) to infinity
(top right-hand corner). Increasing the shear rate shifts the line to the left. Typical
curves σ(k) can then be obtained easily. First, consider small shear rate (Re � 1).
Small wavenumbers (α1 � 1) lie in the shallow viscous regime, with growth rate
scaling as k2 for channel flow and k4/3 for semi-bounded flow; high wavenumbers
(α1 � 1) lie in the deep viscous regime, with growth rate scaling as ±k−2. For unstable
short waves, the corresponding curves σ(k) are sketched in figure 10(a), for stable and
unstable long waves. For strong shear rate (Re� 1), an intermediate region appears
between the long- and short-wave regions for α1 ∈ [Re−1, Re1/2], which corresponds
to the stable inviscid regime. Figure 10(b) displays two typical curves σ(k), for stable
and unstable long waves. For stronger shear rate, a new wall instability, not shown
on the figure, arises with α1 = O(1).

4. Mechanism of the long-wave instability
Why are long waves stable if the thinner layer is less viscous, and unstable if

more viscous, however small the shear Reynolds number is? The aim of this section
is to provide a physical explanation for this ‘thin-layer effect’, and to understand
how the presence of the walls modifies the short-wave mechanism given by Hinch
(1984). The style is now changing a little to a physical argument supported by
mathematical descriptions. For this purpose, dimensional quantities are used. Three
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Figure 10. Typical curves for the growth rate σ versus wavenumber k. (a) Small shear rate (Re� 1);
(b) strong shear rate (Re� 1); n = 2 for channel flow and n = 4

3
for semi-bounded flow; the upper

(lower) curve corresponds to unstable (stable) long waves.

typical situations are considered: channel flow with one layer much thinner than the
other (§ 4.1), channel flow with nearly equal layer thickness (§ 4.2), and semi-bounded
flow over a thin layer (§ 4.3). For each case, the estimates for the wave velocity and
growth rate are compared with available asymptotic results. The shear Reynolds
number Re is assumed to be small, and the viscosity and density ratios m and r are
O(1).

4.1. Channel flow: case of a thin layer (α1 � α2 � 1)

Consider a small-amplitude disturbance of the interface, η = η̂ cos k(x − ct) (figure
11(a)). Owing to the viscosity difference, the base velocities are not equal at the
disturbed interface, and velocity disturbances must develop for the continuity of
longitudinal velocity to be satisfied, according to:

a1η̂ + û1(0) = a2η̂ + û2(0). (27)

When µ2 > µ1, the lower fluid slows down and the upper fluid speeds up, at both the
peaks and troughs of the wave. Thus, the disturbance û1 is negative and û2 is positive,
at least near the interface. When µ2 < µ1, these velocity disturbances are reversed.

For small shear Reynolds number and long waves, disturbances diffuse away from
the interface up to the walls, and a linear shear flow might be expected in both
fluids; but linear flows generally do not satisfy the requirements of no net flow (mass
conservation) and continuity of the y-velocity at the interface, i.e.∫ 0

−h1

û1 dy = − v̂1(0)

ik
= − v̂2(0)

ik
=

∫ 0

h2

û2 dy. (28)

Hence, pressure disturbances develop (figure 11(b)). However, the pressure driven flow
is much smaller in the thin layer than in the thick layer, so that the flow in the thin
layer is very close to a linear shear flow. Then, continuity of shear stress,

µ1∂yû1(0) = µ2∂yû2(0), (29)

requires only small velocities in the thin layer. Thus, continuity of x-velocity (27)
gives at the leading order:

U := û2(0) = (a1 − a2)η̂ =
µ2 − µ1

µ1

a2η̂, (30)
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Figure 11. (a) Continuity of x-velocity at the deformed interface creates velocity disturbances.
(b) Sketch of the profile of the velocity disturbances, and sign of the vorticity disturbances. Mass
conservation in the lower fluid imposes wave velocity to the left when µ2 > µ1.

and the velocity field is a combination of a linear shear flow U(1−y/h2) and a pressure
driven flow −∂xp̂2y(h2−y)/2µ2. The pressure gradient is that which is needed to make
the total net flow of the two layers equal to zero, i.e. at leading order, that which
assures no net flow in the thick layer. Indeed, the flow in the thin layer is O(h2

1/h
2
2)

smaller than that generated by the pressure gradient in the thick layer; thus only a
small change in that pressure gradient is needed to make the total net flow of the two
layers equal to zero. Hence,

û2 = U

(
1− y

h2

)(
1− 3

y

h2

)
, (31)

with pressure gradient 6µ2U/h
2
2. This upper layer flow exerts a shear stress µ2∂yû2(0) =

−4µ2U/h2 on the interface which drives the flow in the thin layer. This flow is then:

û1 = −4U
µ2/µ1

h2/h1

(
1 +

y

h1

)
. (32)

Wave propagation is found from mass conservation in the thin layer: the volume
û1(0)h1δt, leaving the control volume [0 6 x 6 1

2
λ, y < 0] during a small time interval

δt, must be balanced by a shift of the interface (figure 11b), according to:

û1(0)h1δt =

∫ λ/2

0

η̂[cos k(x− cδt)− cos kx]dx = 2η̂cdimδt, (33)

which gives the wave velocity:

cdim

a1h1

= 2
1− µ2/µ1

h2/h1

. (34)
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(Note that the wave velocity may alternatively be obtained from the kinematic
condition at the interface, the small vertical flow being calculated from the mass
conservation equation.) The results (31) and (32) for the fluid velocity, and (34) for
the wave velocity completely agree with Yih’s results when the leading terms for
d = h2/h1 � 1 are retained, see (A 2) in Appendix C and table 1.

The effects of inertia may be found from either the momentum equations or the
vorticity equation. Calculations from the momentum equations are complicated by the
vertical advection of the base momentum and by pressure gradients; on the contrary,
because the base vorticity is uniform, its advection by the disturbances has no net
effect. Thus, the use of the vorticity equation seems preferable; in addition, it allows
us to understand how the short-wave mechanism of Hinch (1984) is modified. The
leading-order vorticity disturbances,

ω̂2 = −∂yû2 =
U

h2

(
4− 6

y

h2

)
, (35a)

ω̂1 = −∂yû1 = 4
µ2

µ1

U

h2

, (35b)

are of same order of magnitude. Since the wave velocity is smaller than the base flow
a2h2 by O(h2

1/h
2
2), unsteadiness due to wave propagation can be ignored. Let ψ̂i

2 be
the streamfunction of the inertial correction in the thick layer; it is governed by the
problem:

−µ2∂yyyy ψ̂
i
2 = ρ2a2y ikω̂2 (36a)

with

∂yψ̂
i
2 = ψ̂i

2 = 0 on y = 0, y = h2. (36b)

This flow is induced by a torque (the right-hand side of (36a)) acting as if on a viscous
fluid (the left-hand side, viscous because inertia is a small correction in the long-wave
limit). The zero-velocity condition (36b) comes from the fact that velocity in the thick
layer is much larger than in the thin layer, so that, at the leading order, continuity at
the interface reduces to the no-slip condition. Integrating, we find:

ûi
2 =

ikρ2a2U

30h2
2

y(3y2 + h2y − h2
2)(h2 − y)2. (37)

Figure 12 displays the above flow together with the exact eigenfunction, for two
values of the viscosity ratio; it turns out that (37) gives a fairly good approximation
of the eigenfunction, except in a region of thickness O(h1) near the interface. For
µ2 > µ1 (figure 12a), the positive inertially induced couple in the middle half of the
layer creates a positive flow near the interface, whereas the negative inertially induced
couple near the upper wall reduces the velocity to zero. For µ2 < µ1 (figure 12b), all
velocities are reversed.

In the thin layer, the inertial correction is not driven by the inertia there, but by
the shear stress exerted by the inertial correction flow in the thick layer

µ2∂yû
i
2(0) = −i 1

30
kρ2a2Uh

2
2,

which gives the flow in the thin layer:

ûi
1 = − ikρ2a2Uh

2
2

30µ1

(h1 + y). (38)
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Figure 12. Eigenfunctions ûj for long waves, for d = 10, r = 1, Re = 1. (a) m = 2; (b) m = 0.5. At

x = 0: dominant order x-velocity in phase with the interface; at x = 1
4
λ and x = 3

4
λ: out-of-phase

inertial correction. Dotted lines, equation (37).

Stability (or instability) arises from mass conservation: the volume ûi
1(0)h1δt, enter-

ing (or leaving) the control volume [ 1
4
6 x/λ 6 3

4
, y < 0] during a small time interval

δt, can be balanced only by a decay (or growth) of the perturbed interface, according
to:

iûi
1(0)h1δt =

∫ 3λ/4

λ/4

η̂(eσδt − 1) cos kx dx = −2η̂ σdim

k
δt (39)

which gives the growth rate:

σdim

a1

=
1− µ2/µ1

60
(kh1)

2ρ2a2h
2
2

µ2

. (40)

Again, the results (37) and (38) for the fluid velocity, and (40) for the growth rate
completely agree with Yih’s results when the leading terms for d = h2/h1 � 1 are
retained, see (A 5) in Appendix C and table 1.

Most of the features of the short-wave mechanism found by Hinch (1984) are
present in the long-wave mechanism described above: generation of velocity dis-
turbances in order to satisfy continuity of velocity at the perturbed interface, and
advection of the vorticity disturbances by the base flow creating out-of-phase com-
ponents midway between the peaks and troughs. The important difference for the
long waves is the nearness of the lower wall, which reduces everything in the thin
layer: the leading-order velocity is reduced there by a factor h1/h2, the out-of-phase
vorticity produced by inertia acting there is reduced by h3

1/h
3
2, and so the locally

induced vertical flow (and so the growth rate) is reduced by h5
1/h

5
2. Hence, inertia acts

effectively only in the thick layer. Rather subtly, inertia acting in the thick layer does
not produce an immediate vertical flow because of the constraint of no net flow. So
instead, the thick layer drags the thin layer along with it, which produces a linear flow
within the thin layer, and it is the horizontal divergence of this flow which causes
growth. Hence, the growth depends on the sign of the flow in the thick layer, which
depends on whether the thin or thick layer is the less viscous.
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Figure 13. Dominant order x-velocity û(0)
j for m = 4. (a) d2 = 4 = m; (b) d2 = 1 < m;

(c) d2 = 100 > m.

4.2. Channel flow: case of layers with similar thickness (α1 ≈ α2 � 1)

As mentioned in the previous section, pressure disturbances develop in order to satisfy
the requirement (28) of no net disturbance flow. However, linear profiles fulfil this
requirement, i.e. verify h1û1(0) = −h2û2(0), and also satisfy continuity of shear stress if
(h2/h1)

2 = µ2/µ1. Hence, the presence of the factor (d2−m) in the pressure disturbance
(see Appendix C). Thus, when viscosities and layer thicknesses are such that d2 ≈ m,
the pressure disturbance plays a negligible role and velocity profiles are linear in both
fluids (figure 13a):

û1 = −Uµ2/µ1

h2/h1

(1 + y/h1), û2 = U(1− y/h2), (41)

with

U := û2(0) =
µ2 − µ1

µ2

h2/h1

µ2/µ1 + h2/h1

a1η̂.

Otherwise, the pressure disturbance induces negative velocity curvature when d2 < m
(figure 13b) or positive curvature when d2 > m (figure 13c), with negligible curvature
effects in the lower fluid when d� 1. The wave velocity can be calculated from mass
conservation as in the previous subsection, leading to:

cdim

a1h1

=
1

2

1− µ2/µ1

µ2/µ1 + h2/h1

. (42)

When d2 = m, (41) and (42) are exactly Yih’s results; when d2 ≈ m ≈ 1, i.e. for
layers with nearly equal thickness and viscosity, (41) and (42) corresponds to (A 3) in
Appendix C and to the wave velocity given in table 1.

Inertial effects may be taken into account as previously. However, the velocities
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have the same order of magnitude in both fluids, and the momentum (or vorticity)
equations cannot be uncoupled, leading to less simple calculations. A simple estimate
of the growth rate may be obtained when d2 ≈ m ≈ 1 as follows. For nearly equal
viscosities, the wave velocity is small, and unsteadiness can be neglected in the inertia
terms. First, consider the case ρ1 = 0, i.e. the lower fluid with negligible inertia;
figure 14(a) displays the corresponding eigenfunctions for long waves. In the upper
layer, advection of the vorticity disturbances ω̂2 ≈ U/h2 creates an out-of-phase
component ω̂i

2 ∼ −iReeff 2ω̂2, where Reeff 2 := α3
2/β

3
2 = (kh2)(ρ2a2h

2
2/µ2) is the effective

Reynolds number defined in § 3. This out-of-phase vorticity corresponds to velocity
ûi

2 ∼ ω̂i
2h2 ∼ −iReeff 2U. In order to satisfy the no net flow condition, a counter-flow

ûi
1 ∼ −ûi

2 must develop in the lower layer, which is created by the pressure gradient
ikp̂i

1 ∼ µ1(−ûi
1/h

2
1), i.e. by the pressure p̂i

1 ∼ −ρ2a2h2U. Since p̂i
2 = p̂i

1, this pressure
modifies slightly the flow in the upper layer but does not change the magnitude of
the velocity there. This out-of-phase flow gives rise to amplification or decay of the
interfacial disturbance according to the mass conservation equation (39), leading to
the growth rate:

σdim = ikh1

ûi
1(0)

η̂
= a1(1− µ2/µ1)(kh1)

2ρ1a1h
2
1

µ1

.

Figure 14(b) displays the eigenfunctions when ρ1/ρ2 = 0.5, and shows that the above
reasoning for ρ1 = 0 holds as long as ρ1 < ρ2, with flows dominated by inertia in the
upper fluid and by the pressure gradient in the lower fluid. Consider now the opposite
case ρ2 = 0 (figure 15a); a similar reasoning shows that (i) the flow in layer 1 is driven
by inertia with velocity ûi

1 ∼ iReeff 1U, and (ii) the flow in layer 2 is driven by the
pressure p̂i

2 ∼ −ρ1a1h1U, leading to growth rate σdim/a1 = (1−µ2/µ1)(kh1)
2(ρ1a1h

2
1/µ1).

Figure 15(b) displays the eigenfunctions when ρ1/ρ2 = 2, and shows that the reasoning
for ρ2 = 0 holds as long as ρ2 < ρ1. Finally, for fluids with similar inertia, the resulting
flow can be considered as the superposition of the above two flows, leading to the
following pressure disturbance and growth rate:

p̂i
1 = p̂i

2 ∼
(

1− µ2

µ1

)
(ρ1 + ρ2)a

2
1h1η̂ (43)

σdim

a1

= (kh1)
2

(
1− µ2

µ1

)(
1− ρ2

ρ1

)
ρ1a1h

2
1

µ1

. (44)

The pressure (43) and growth rate (44) agree with the long-wave results, giving the
right dependence with all parameters, see (A 6) in Appendix C and table 1.

4.3. Semi-bounded flow (α1 � 1 and α2 � 1)

When the upper wall is at a distance from the interface greater than the wavelength,
it plays no more role, the vertical gradients in the upper fluid are no longer of order
1/h2, and the analysis performed in § 4.1 must be slightly modified. Rather than
following exactly the same approach as in § 4.1, we use in this section the results
obtained in § 3 on the penetration depth δj and the effective Reynolds number Reeff j

to derive estimates of the wave velocity and growth rate.
The lower layer is assumed to be in the shallow viscous regime (α1 � 1 and α1 � β1),

with dimensional penetration depth δdim
1 = δ1/k ∼ h1 and effective Reynolds number

Reeff 1 ∼ α1Re; the upper layer is assumed to be in the inviscid regime (α2 � β2

and β2 � 1), with dimensional penetration depth δdim
2 = δ2/k ∼ β2/k and effective

Reynolds number Reeff 2 ∼ 1. Since β1 ∼ β2 for fluids with similar viscosity and
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Figure 14. Eigenfunctions ûj for long waves, for d = 1, m = 1.1, Re = 1. (a) ρ1 = 0; (b) ρ1 = 0.5ρ2.
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Figure 15. Eigenfunctions ûj for long waves, for d = 1, m = 1.1, Re = 1. (a) ρ2 = 0; (b) ρ2 = 0.5ρ1.
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λ: dominant order x-velocity in phase with the interface; at x = 1

4
λ and x = 3

4
λ:

out-of-phase inertial correction.

density, we have δdim
1 � δdim

2 , with:

δdim
1

δdim
2

∼ h1

(k2µ2/ρ2a2)1/3/k
= (kh1)

1/3

(
rRe

m2

)1/3

. (45)

Thus, continuity of shear stress at the interface,

µ1

û1(0)

δdim
1

∼ µ2

−û2(0)

δdim
2

,
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implies that û1 is much smaller than û2. Then continuity of x-velocity (27) gives:

U := û2(0) ∼ µ2 − µ1

µ2

a1η̂.

Hence, in the thin layer, the linear shear flow in phase with the interface is such that:

û1(0) ∼ −δ
dim
1

δdim
2

µ2 − µ1

µ1

a1η̂,

which, together with mass conservation (33), gives the wave velocity:

cdim

a1h1

∼ δdim
1

δdim
2

µ1 − µ2

µ1

. (46)

Together with (45), (46) is exactly the wave velocity obtained by Hooper (1985),
except for the numerical factor 0.46 (see table 2). Note that, unlike the case of channel
flow, waves are dispersive, because the penetration depth in the thick layer depends
on the wavelength.

Advection of the vorticity disturbances ω̂2 ∼ U/δdim
2 by the base flow in the upper

fluid creates an out-of-phase vorticity component ω̂i
2 ∼ −iReeff 2ω̂2, which induces a

shear stress µ2ω̂
i
2 on the lower fluid. This shear stress creates in turn a linear flow in

the thin layer such that ûi
1(0) ∼ µ2/µ1h1ω̂

i
2, which, together with mass conservation

(33), gives the growth rate σ:

σdim

a1

=
−iûi

1(0)kh1

2a1η̂
∼ kh1

µ1 − µ2

µ1

δdim
1

δdim
2

Reeff 2. (47)

With Reeff 2 = 1 and δdim
1 /δdim

2 given by (45), this is exactly the growth rate obtained
by Hooper (1985) for semi-bounded flows, except for the numerical factor (see table
2). Note that the reasoning leading to (47) holds for channel flows with Reeff 2 =
(kh2)(ρ2a2h

2
2/µ2) and δdim

1 /δdim
2 = h1/h2, giving (40) back. Finally, the mechanism for

the long-wave instability for semi-bounded flows is the same as for channel flows, the
difference in the growth rate arising from the difference in the penetration depth and
effective Reynolds number in the thick layer.

5. Summary and conclusion
In order to gain better physical insight into the numerous linear stability results for

the two-layer Couette flow, we have first considered the much simpler problem of the
single-fluid Couette flow over a wavy solid boundary. Taking the inverse wavenumber
as the unit length, this problem depends on two parameters only: the dimensionless
thickness α and a diffusion length β. Three different flow regimes have been exhibited:
the shallow viscous, the deep viscous, and the inviscid regimes. Each regime occupies a
well-defined region in the (β, α)-plane, defining a ‘phase diagram’, and is characterized
by a penetration depth δ of vorticity disturbances, and an effective Reynolds number
Reeff measuring the importance of inertial effects on disturbances (figure 6).

Then, armed with the idea of the phase diagram, we came back to the two-layer
Couette flow. Ignoring gravity and surface tension, this problem depends on four
parameters: two dimensionless thicknesses αj and two viscous lengths βj . Analysing
the eigenfunctions from the existing literature, it appears that on considering the
penetration depth δj of vorticity disturbances induced by the slightly deformed
interface, as well as the effective Reynolds number Reeff j , several flow regimes can be
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defined. Remarkably, these flow regimes are the same as those of the single-fluid flow,
with the same scalings for the penetration depth and the effective Reynolds number,
allowing the construction of phase diagrams of the flow regimes, one for channel
flows and one for semi-bounded flows. Then, each type of instability is associated
with one flow regime: the long-wave instability found by Yih (1967) is typical of
the shallow viscous regime, and the short-wave instability found by Hooper & Boyd
(1983) is typical of the deep viscous regime. No interfacial instability arises in the
inviscid regime. However, in the latter regime, which corresponds to strong shear
rates, a wall mode of instability may appear (Hooper & Boyd 1987). Analysis of the
available numerical results confirms the relevance of the phase diagram (figure 8).
Moreover, it appears that the domain of existence of an instability extends beyond the
validity domain of the asymptotic expansion by which it was primarily discovered.
For instance, the long-wave instability is typical of all situations when the walls
bound the diffusion of vorticity, i.e. when the wavelength and viscous lengths are
greater than the layer thicknesses. Similarly, the short-wave instability typically arises
for wavelengths smaller than the layer thicknesses and viscous lengths. Finally, on
considering the lines of constant shear Reynolds number in the phase diagram (figure
9), each wavenumber appears to fall into a particular flow regime, and typical curves
giving the growth rate versus wavenumber can be depicted (figure 10).

The basis of this unified view of interfacial instabilities is the comparison between
the three lengthscales involved in each fluid layer, namely the wavelength, the layer
thickness and the diffusion length: the penetration depth of vorticity disturbances
must scale with one of these lengths, leading to the three flow regimes (when fluid
properties are assumed to be of the same order of magnitude). This picture is
significantly different and simpler than that proposed by Hooper & Boyd (1987), who
found four regimes (their regime (iv) must be merged partly with their regime (i), and
form the deep viscous regime, and partly with their regime (ii), and form the shallow
viscous regime).

The second part of this paper was devoted to the mechanism for the long-wave
instability, and to an explanation of the ‘thin-layer effect’. As for the short-wave
instability, the initiating mechanism is that the base velocities do not match on
the disturbed interface, and velocity disturbances must develop in order to satisfy
continuity: this instability is a ‘velocity-induced instability’, as opposed to the ‘stress-
induced instability’ typical of free-falling films (Smith 1990). Three typical situations
have been studied: (i) channel flow with a thin layer, (ii) channel flow with nearly
equal layer thickness, and (iii) semi-bounded flow over a thin layer. For all cases,
the requirement of no net flow for the disturbances creates a pressure gradient, and,
because of the presence of the wall, mass conservation in each fluid implies a shift of
the interface with the less viscous fluid, which corresponds to the wave velocity. In
each case, good estimates have been obtained for the wave velocity and the dominant
Stokes flow of the disturbances.

Instability then arises from small inertial effects. For a thin layer, inertial effects in
the thick layer are much greater than in the thin layer, and create an out-of-phase
flow which exerts a shear stress on the thin layer; this shear stress drives a small
out-of-phase flow in the thin layer which is responsible for the growth or decay of
the initial interfacial disturbance. The sign of the viscosity difference imposes the sign
of the velocity disturbances, which impose in turn the sign of the growth rate, which
originates the ‘thin-layer effect’. Moreover, the growth rate appears to be proportional
to the ratio δ1/δ2 of the penetration depths, which explains why it scales as k2 for
channel flow and as k4/3 for semi-bounded flow. For layers with nearly equal thickness
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and viscosity, inertial effects have the same order of magnitude in both fluids and
compete with one another; the sign of the out-of-phase flow is imposed by the heavier
fluid which has more inertia, whereas a pressure gradient develops in order to reverse
the disturbance flow in the lighter fluid and satisfy the requirement of no net flow.
In all cases, simple estimates give the right dependence of the growth rate against all
parameters.

Finally, the ‘thin-layer effect’ is typical of multi-layer flows, such as pressure-driven
plane or annular flows, or gravity-driven flows down an inclined plane. The jump in
the slope of the basic state owing to the viscosity difference generally plays a central
role in originating the disturbance flow, but may not be necessary. For instance, for
the vertical core-annular Poiseuille flow with equal viscosity, the disturbance flow
arises from the jump in the curvature of the basic state owing to density difference
(Smith 1989).

Appendix A. Constants Cj in (6) and (7) for the single-fluid Couette flow

C1 =
B+ − B−

A+B− − A−B+
, C2 = − A+ − A−

A+B− − A−B+
, C3 = 1

2
, C4 = 0,

with

A± =

∫ α

0

e±y Ai (z(y)) dy, B± =

∫ α

0

e±y Bi (z(y)) dy,

and

z(y) =
1

β
(y − iβ3)eiπ/6.

Appendix B. Wave velocity and growth rate of wall modes (Hooper &
Boyd 1987)

For β1/α1 � 1, β1 � 1 and r = 1, for channel flows:

cdim ∼ a1

k
C, C =

1− m
m

sinh α1 sinh α2

sinh (α1 + α2)

σdim

a1

∼ −k
(
ν1

a1

)1/2
(α1 + C)−1/2 sinh2 α2 − m(α2 − mC)−1/2 sinh2 α1

21/2 sinh2 (α1 + α2)

and for semi-bounded flows:

cdim ∼ a1

k
C, C =

1− m
2m

(1− exp (−2α1))

σdim

a1

∼ −k
(
ν1

a1

)1/2
1− m
m

exp (−2α1)

21/2(α1 + C)1/2
.

Appendix C. Long-wave instability results
We recall here the solution of the conservation equations (19) and boundary

conditions (20) obtained by Yih (1967) for Couette flow, with α1 � 1 and Re =
α2

1/β
3
1 = O(1). In addition to the results for the velocity and pressure eigenfunctions,

simpler results are also given for (i) a thin lower layer (d � 1), and (ii) layers with
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close thickness and viscosity (d ≈ 1, m ≈ 1). We choose the normalization condition
η̂ = kη̂dim = 1. In order to rescale transverse gradients ∂y to O(1), we introduce
Y = y/α1. Expanding the velocities and pressure in powers of α1, (19) and (20) give,
at the leading order:

iû(0)
j + ∂Y v̂

(1)
j = 0 (j = 1, 2),

0 = −ip̂(0)
j +

mj

Re
∂Y Y û

(0)
j (j = 1, 2),

0 = ∂Y p̂
(0)
j (j = 1, 2),

with the boundary conditions at the walls Y = −1 and Y = d:

û
(0)
1 (−1) = 0, v̂

(1)
1 (−1) = 0,

û
(0)
2 (d) = 0, v̂

(1)
2 (d) = 0,

and the boundary conditions at the interface Y = 0:

1 + û
(0)
1 =

1

m
+ û

(0)
2 , v̂

(1)
1 = v̂

(1)
2 ,

∂Y û
(0)
1 = m∂Y û

(0)
2 , p̂

(0)
2 = p̂

(0)
1 ,

−ic(1) − v̂(1)
j = 0.

The general solution satisfying the conservation equations, the no-slip conditions
at the walls and continuity of normal stress at the interface is given by:

û
(0)
1 = (Y + 1)

(
−Re p0

2
Y + û

(0)
1 (0)

)
, v̂

(0)
1 = −i

∫ Y

−1

û
(0)
1 dy, (C 1a)

û
(0)
2 =

(
Y

d
− 1

)(
−Re p0d

2m
Y − û(0)

2 (0)

)
, v̂

(0)
2 = −i

∫ Y

d

û
(0)
2 dy. (C 1b)

Continuity of tangential stress and velocity at the interface then gives:

p̂
(0)
2 = p̂

(0)
1 = ip0 =

i

Re

6(1− m)(d2 − m)

D(m, d)
,

û
(0)
1 (0) =

1− m
D(m, d)

(m+ 3d2 + 4d3),

û
(0)
2 (0) =

(1− m)d

mD(m, d)
(4m+ 3md+ d3),

c(1) = iv̂(1)
j (0) =

2(1− m)d2(1 + d)

D(m, d)
,

D(m, d) = d4 + 4dm+ 6d2m+ 4d3m+ m2.

At this order, the eigenvalue c(1) is real and corresponds to the dimensional wave
velocity cdim = α1c

(1)a1/k = a1h1c
(1). Note that non-zero wave velocity is consistent

with the reversibility of the Stokes flow described by these leading-order equations:
reversing the base flow velocity simply reverses the wave velocity.

For a thin lower layer (d� 1), the wave velocity is given in table 1, and the above
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expressions for the pressure and fluid velocity give:

p̂
(0)
2 = p̂

(0)
1 ≈ −i

6

Re

1− m
d2

,

û
(0)
1 =

4(1− m)

d
(Y + 1),

û
(0)
2 =

1− m
m

(
Y

d
− 1

)(
−3

Y

d
+ 1

)
.


(C 2)

For nearly equal viscosity (|1−m| � 1) and layer thickness (|1− d| � 1), the wave
velocity is given in table 1, and the pressure and fluid velocity simplify to give:

p̂
(0)
2 = p̂

(0)
1 ≈ −i

3

4Re
(1− m)(1− d),

û
(0)
1 ≈ 1− m

2
(Y + 1),

û
(0)
2 ≈ 1− m

2
(Y − d).


(C 3)

In both fluids, the pressure disturbance is very small, and the motion is essentially a
shear flow driven by the shear stress disturbance at the interface.

At the next order in the perturbation expansion, the equations to be solved are:

iû(1)
j + ∂Y v̂

(2)
j = 0 (j = 1, 2),

rj{i(Y /mj − c(1))û(0)
j + v̂

(1)
j /mj} = −ip̂(1)

j +
mj

Re
∂Y Y û

(1)
j (j = 1, 2),

0 = ∂Y p̂
(1)
j (j = 1, 2),

with the boundary conditions at the walls Y = −1 and Y = d:

û
(1)
1 (−1) = 0, v̂

(2)
1 (−1) = 0,

û
(1)
2 (d) = 0, v̂

(2)
2 (d) = 0,

and the boundary conditions at the interface Y = 0:

û
(1)
1 = û

(1)
2 , v̂

(2)
1 = v̂

(2)
2 ,

∂Y û
(1)
1 = m∂Y û

(1)
2 , −p̂(1)

2 + p̂
(1)
1 = 0,

−ic(2) − v̂(2)
j = 0.

The solution of these equations is obtained as for the zeroth-order and gives:

û
(1)
1 = iRe

∫ Y

−1

dY

(∫ Y

(p1 + (Y − c(1))û(0)
1 − iv̂(1)

1 ) dY + τint

)
, (C 4a)

û
(1)
2 =

iRe

m

∫ Y

d

dY

(∫ Y

(p1 + r(Y /m− c(1))û(0)
2 − ir/m v̂(1)

2 ) dY + τint

)
, (C 4b)
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with:

p1 =
(−1 + m)

5m2D(m, d)3
(−25d9m3 − m3(20m+ 139)d8 − 2m3(69m+ 145)d7

−m3(271 + 349m+ 8m2)d6 − 3m3(15m2 + 131m+ 32)d5 − 10m4(8m+ 17)d4

−4m4(9m+ m2 + 1)d3 − m5(m− 13)d2 + 7m6d+ m7

+r(d13 + 7d12m+ m(−1 + 13m)d11 − 4m(9m+ m2 + 1)d10 − 10m2(17m+ 8)d9

−3m2(32m2 + 15 + 131m)d8 − m2(271m2 + 349m+ 8)d7 − 2m3(69 + 145m)d6

−m3(20 + 139m)d5 − 25m4d4)),

τint =
(1− m)

30m2D(m, d)3
(−100d10m3 − 4m3(131 + 20m)d9 − m3(1025 + 496m)d8

−24m3(48m+ 37)d7 − 4m3(72 + 11m2 + 298m)d6 − 4m4(23m+ 121)d5

−6m4(5m+ 4)d4 + 8m5(2 + m)d3 + 8m5(−1 + m)d2

−4m6d− m7 + r(d14 + 4d13m+ 8m(−1 + m)d12 − 8m(1 + 2m)d11

+6m2(4m+ 5)d10 + 4m2(121m+ 23)d9 + 4m2(72m2 + 298m+ 11)d8

+24m3(37m+ 48)d7 + m3(496 + 1025m)d6 + 4m3(131m+ 20)d5 + 100m4d4)),

−ic(2) = v̂
(2)
1 (0) = v̂

(2)
2 (0) =

Re(1− m)d2

60m2D(m, d)3
(32d9m2 + m2(56m+ 135)d8

+4m2(8m2 + 61m+ 49)d7 + 4m2(34m2 + 95m+ 24)d6 + 4m3(57m+ 49)d5

+2m3(8m2 + 57m− 4)d4 + 12m4(m− 3)d3 − 4m4(2 + 5m)d2

−4m5(m+ 1)d− m6 + r(d12 + 4(m+ 1)d11 + 4m(2m+ 5)d10 + 12m(3m− 1)d9

+2m(4m2 − 57m− 8)d8 − 4m2(49m+ 57)d7 − 4m2(24m2 + 95m+ 34)d6

−4m2(49m2 + 61m+ 8)d5 − m3(135m+ 56)d4 − 32m4d3)).

At this order, the eigenvalue c(2) is imaginary and corresponds to the dimensional
growth rate σdim = −iα2

1c
(2)a1.

For a thin lower layer (d� 1), the growth rate is given in table 1, and the pressure
and fluid velocities are:

p̂
(1)
2 = p̂

(1)
1 = p1 ≈ −1

5

r(1− m)

m2
d,

û
(1)
1 ≈ iRe

r(1− m)d2

30m2
{Y + 1},

û
(1)
2 ≈ iRe

r(1− m)d2

30m2

{
dQ1

(
Y

d

)
+ d0Q0

(
Y

d

)
+ d−1Q−1

(
Y

d

)
+ O(d−2)

}
,


(C 5)
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where the Qj are polynomials given by:

Q1(y) =
1

m
y(y − 1)2(−3y2 − y + 1),

Q0(y) = (y − 1)(12y4 − 8y3 − 8y2 + 7y − 1),

Q−1(y) = (y − 1)(21y4 + 6y3 − 34y2 + 23y − 3− m(48y4 − 17y3 − 57y2 + 48y − 8)).

In the upper layer, the leading Q1-term gives the right behaviour far from the interface,
the Q0-term gives the right behaviour near the interface and matches the velocities
at the interface (Q1(0) = 0 and Q0(0) = 1). However, the net flux arising from each
of these terms is zero. The dominant mass flux is obtained from the Q−1-term, which
gives the growth rate shown in table 1.

For nearly equal viscosities (|1 − m| � 1) and layer thicknesses (|1 − d| � 1), the
growth rate is given in table 1, and pressure and fluid velocity are:

p̂
(1)
2 = p̂

(1)
1 = p1 ≈ (1− m)

1 + r

10
,

û
(1)
1 ≈ iRe

1− m
480

Q0(Y , r), (C 6)

û
(1)
2 ≈ iRe

1− m
480

rQ0(−Y , 1/r),
where

Q0(Y , r) = (Y + 1)(10Y 3 − 10Y 2 − 26Y + 1 + r(24Y + 1)).
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